Green-Synthesized Metallic Nanoparticles Using Herbal Extracts: Characterization and Antibacterial Efficacy
Published in IJPHDT, Vol-2, Issue-11, Nov-2025 (Vol. 2, Issue 11, 2025)

Keywords
Abstract
Authors (1)
Download Article
Best for printing and citation
Article Information
- Article ID:
- IJPHD-00000199
- Paper ID:
- IJPHD-01-000199
How to Cite
, R. (2025). Green-Synthesized Metallic Nanoparticles Using Herbal Extracts: Characterization and Antibacterial Efficacy. International Journal of Pharmacognosy and Herbal Drug Technology, 2(11), xx-xx. https://ijphdt.scholarjms.com/articles/84
Article Actions
Article Impact
More from this Issue
Anti-Inflammatory Herbs in Rheumatoid Arthritis: Mechanistic In Vitro Studies and Translational Potential
Key anti-inflammatory herbal compounds—curcumin, curcumin analogues, resveratrol, boswellic acids derived from Boswellia serrata, and Tripterygium wilfordii extracts—are reviewed in this study, together with mechanistic in vitro data and translational implications, for the management of rheumatoid arthritis (RA). This research provides a summary of their molecular processes, which include cytokine suppression, NF-κB inhibition, antioxidant action, and immunological modulation, based solely on recent systematic reviews, meta-analyses, preclinical evaluations, and randomized trials. Emerging clinical translation in autoimmune illnesses and osteoarthritis is supported by good molecular evidence for these herbs, especially curcumin, resveratrol, and boswellic acids. Bioavailability, consistent dosage, and long-term safety are still areas where research is lacking in RA. Optimized formulations, high-quality RA-specific clinical studies, and mechanistic validation through in vitro disease models should be the priorities of future research.
Antiviral Potential of Medicinal Plants Against Respiratory Viruses: In Vitro Screening and In Silico Prioritization
Medicinal plants represent a promising source of antiviral agents against respiratory viruses, supported by evidence from in vitro, in vivo, and in silico studies. Key bioactive compounds, including silymarin from Silybum marianum, germacrone from Geranium macrorrhizum, and licochalcone A from Glycyrrhiza glabra, have demonstrated the ability to reduce viral replication, inhibit viral enzymes such as neuraminidase, interfere with viral entry, and modulate host immune signaling pathways, enhancing viral clearance. Traditional multi-herb formulations, including Japanese medicines like Shahakusan and Hochuekkito, also show measurable antiviral activity, reflecting historical therapeutic applications. Despite these promising findings, challenges remain in standardizing extracts, evaluating pharmacokinetics and safety, and bridging in vitro potency to in vivo efficacy. Integrating in silico prioritization with systematic preclinical studies is essential to guide the selection of candidate phytochemicals for clinical translation. Overall, these findings highlight the potential of plant-derived antivirals as safe, effective, and complementary therapeutics for both human and veterinary respiratory viral infections.
Development and Optimization of Sustained-Release Herbal Tablets for Metabolic Syndrome: Formulation, In-Vitro Release and Stability
Metabolic syndrome is a multifactorial disorder that involves hyperglycemia, dyslipidemia, obese patients, and high cardiovascular risk with the need to be treated on a long-lasting basis to provide long-term clinical outcomes. Herbal medicines provide safe multi-targeted therapeutic potential; however, due to their immediate release dosage form the bioavailability is rather inconsistent and less patient compliance is expected. The proposed study endeavored to design and streamline sustained-release (SR) polyherbal tablets utilizing standardized extracts of Gymnema sylvestre, Trigonella foenum-graecum and Curcuma longa towards enhanced management of metabolic syndrome. The 6 formulations (F1-F6) were developed with different concentrations of the polymer and tested in terms of pre-compression, post-compression qualities, in vitro drug release, stability, and in vivo efficacy in STZ induced diabetic rats. F6 was found to have the best physicochemical properties, extended drug release (81% at 12 hours), and stability in accelerated conditions. Fastening in vivo experiments indicated that F6 reduced the level of fasting blood glucose, total cholesterol and triglyceride levels and increased the level of HDL that had the same therapeutic effects as metformin (p